1841A - Game with Board - CodeForces Solution


games

Please click on ads to support us..

C++ Code:

//jay Shree Krishna
//har har mahadev

//a%c=b%c
//(b-a)%c=0
//b-a is multiple of c
// The required number of swaps of adjacent elements to sort a permutation is exactly the number of inversions in it
#pragma GCC optimize("O3,unroll-loops","Ofast")
#pragma GCC target("avx2,bmi,bmi2,lzcnt,popcnt")
#include<bits/stdc++.h>
using namespace std;
#define ll long long int
#define p pair
#define pll pair<ll,ll>
#define pii pair<int,int>
#define vpll vector<pair<ll,ll>>
#define ull unsigned long long int
#define vll vector<ll>
#define vii vector<int>
#define vcc vector<char>
#define vdd vector<double>
#define vvll vector<vector<ll>>
#define vvii vector<vector<int>>
#define vvcc vector<vector<char>>
#define vvdd vector<vector<double>>
#define rep(i,a,b) for(i=a;i<=b;i++)
#define repr(i,a,b) for(i=a;i>=b;i--)
#define all(v) v.begin() , v.end()
#define rall(v) v.rbegin(),v.rend()
#define ff first
#define ss second
#define pb push_back
#define rev_sort(v) sort(all(v),greater<ll>())
typedef unsigned long long int ulli;
template<typename T> istream& operator>>(istream& in, vector<T>& a) {for (auto &x : a) in >> x; return in;};
template<typename T> ostream& operator<<(ostream& out, vector<T>& a) {for (auto &x : a) out << x << ' '; return out;};

template<typename T1, typename T2> ostream& operator<<(ostream& out, const p<T1, T2>& x) {return out << x.ff << ' ' << x.ss;}
template<typename T1, typename T2> istream& operator>>(istream& in, p<T1, T2>& x) {return in >> x.ff >> x.ss;}

long long int mod =  998244353;

ll powermod(ll a, ll b, ll m)
{
    if (b == 0) return 1;
    ull k = powermod(a, b / 2, m);
    k = k * k;
    k %= m;
    if (b & 1) k = (k * a) % m;
    return k;
}
ll inverse(ll b, ll mod) {
    return powermod(b, mod - 2, mod);
}
// nCr with modulus

// ll factorial(ll n, ll r){
//     if(r==0||r==n) return 1;

//     // dp[n][r]=
//     return (factorial (n-1,r,dp)%mod + factorial (n-1,r-1,dp)%mod)%mod;

// }
ll sqrtf (ll x) {
    ll ans = 0;
    for (ll k = 1LL << 30; k != 0; k /= 2) {
        if ((ans + k) * (ans + k) <= x) {
            ans += k;
        }
    }
    return ans;
}

// ll kadane( vll arr, ll n) {

//     ll max_end = 0;
//     ll mx = LLONG_MIN;

//     for (ll i = 0; i < n; i++) {
//         max_end += arr[i];
//         if (mx < max_end) {

//             mx = max_end;
//         }
//         if (max_end < 0) {

//             max_end = 0;
//         }
//     }
//     return mx;
// }

void bits(ll n, vll&v) {
    ll k = 0;
    while (n > 0) {
        v[k++] = n % 2;
        n /= 2;
    }
}
// Prime test for large numbers

bool isPrime(ull n, int iter = 10)
{
    if (n < 4) return n == 2 || n == 3;
    if (n % 2 == 0 || n % 3 == 0) return false;
    for (int i = 0; i < iter; i++)
    {
        ull a = 2 + rand() % (n - 3);
        if (powermod(a, n - 1, n) != 1) return false;
    }
    return true;
}
bool isval(int i, int j, int n, int m) {
    if (i < 0 || j < 0 || i >= n || j >= m) return false;
    return true;
}
ll SOP(ll n, ll k, vll &v) {
    ll dp[k + 1][n + 1];
    ll sum = 1, prev_sum = 1;
    memset(dp, 0, sizeof(dp));
    for (ll i = 1; i <= k; i++) {
        prev_sum = sum;
        sum = 0;
        for (int j = 1; j <= (n - i + 1); j++) {
            dp[i][j] = (v[j - 1] * (prev_sum - dp[i - 1][j])) % mod;
            if (dp[i][j] < 0 ) dp[i][j] += mod;
            prev_sum -= (dp[i - 1][j]) % mod;
            if (prev_sum < 0) prev_sum += mod;
            sum += (dp[i][j]) % mod;
            if (sum < 0) sum += mod;
        }
    }
    return sum;
}
// const ll N = 3e5;
// vll prime(N + 1, -1);
// void sieve(ll n)
// {
//     // for (ll i = 0; i <= n; i++) prime[i] = -1;

//     ll m = sqrt(n);
//     vll ans;
//     for (ll p = 2; p <= m; p++)
//     {

//         //
//         if (prime[p] == -1)
//         {

//             for (ll i = p * 2 ; i <= n; i += p)
//                 if (prime[i] == -1) prime[i] = p;

//         }
//     }

//     return  ;

// }
ll findLowerBound(vector<pair<ll, ll> >& arr,
                  pair<ll, ll>& p1)
{
    // Given iterator points to the
    // lower_bound() of given pair
    auto low = upper_bound(arr.begin(), arr.end(), p1);

    return low - arr.begin();
}
// ll maxvec(vll &v) {
//     ll mx  = LLONG_MIN;
//     ll i;
//     rep(i, 0, v.size() - 1) mx = max(v[i], mx);
//     return mx;
// }
// ll minvec(vll &v) {
//     ll mn  = LLONG_MAX;
//     ll i;
//     rep(i, 0, v.size() - 1) mn = min(v[i], mn);
//     return mn;
// }
ll sumvec(vll &v) {
    ll sum = 0;
    ll i;
    rep(i, 0, v.size() - 1) sum += v[i];
    return sum;
}
ll func(ll i, ll j) {
    if (i % j == 0) return i / j;
    return (i / j) + 1;
}
// double dp[1 << 20];
double helper(ll num, ll n, ll j, vvdd prob) {
    ll curr = __builtin_popcount(num);
    ll den = (curr * (curr - 1)) / 2;
    double ans = 0;

    for (ll k = 0; k < n; k++) {
        if ((num & (1 << k)) && k != j) {
            ans += prob[k][j];
        }
    }
    ans = ans / (1.0 * den);
    return ans;
}
ll tot = 0;

typedef pair<ll, ll> pi;
// vector <ll> dijkstra(ll V, vector<vector<pair<ll, ll>>> adj, ll s, vll &par)
// {
//     priority_queue<pi, vector<pi>, greater<pi> > pq;
//     pq.push({0, s});
//     vector<ll>dist(V, LLONG_MAX);
//     // vll par(V,-1);
//     dist[s] = 0;
//     while (!pq.empty()) {
//         ll dis = pq.top().first;
//         ll ind = pq.top().second;
//         pq.pop();
//         for (auto it : adj[ind]) {
//             if (dist[it.ff] > dis + it.ss) {
//                 par[it.ff] = ind ;
//                 dist[it.ff] = dis + it.ss;
//                 pq.push({dist[it.ff], it.ff});
//             }
//         }
//     }
//     return dist;
// }


// void build (ll ind, ll l, ll r, vll &v, vll &seg) {
//     if (l == r) { seg[ind] = (v[l]); return;}
//     ll mid = (l + r) / 2;
//     build(2 * ind + 1, l, mid, v, seg);
//     build(2 * ind + 2, mid + 1, r, v, seg);
//     ll lft = seg[2 * ind + 1], rgt = seg[2 * ind + 2];
//     seg[ind] = min(lft, rgt);
//     return ;
// }
// void update(ll ind, ll low, ll high, ll l, ll r, ll val, vll &seg) {
//     //update previous remaining updates

//     if (high < l || r < low) return;
//     if (low >= l && high <= r) {
//         seg[ind] += val;

//         return ;
//     }
//     ll mid = (low + high) / 2;
//     update(2 * ind + 1, low, mid, l, r, val, seg);
//     update(2 * ind + 2, mid + 1, high, l, r, val, seg);
//     seg[ind] = (seg[2 * ind + 1] + seg[2 * ind + 2]);

// }
// ll query(ll ind, ll low, ll high, ll l, ll r, vll &seg) {
//     // if (lazy[ind] != 0) {
//     //     seg[ind] += lazy[ind];
//     //     if (low != high) {
//     //         lazy[2 * ind + 1] += lazy[ind];
//     //         lazy[2 * ind + 2] += lazy[ind];
//     //     }
//     //     lazy[ind] = 0;
//     // }
//     if ((r < low) || (l > high)) {
//         return INT_MAX;
//     }
//     if (low >= l && high <= r) {
//         return seg[ind];
//     }
//     ll mid = (low + high) / 2;
//     // ll ans = (1LL << 31) - 1;

//     ll lft = query(2 * ind + 1, low, mid, l, r, seg);
//     ll rgt = query(2 * ind + 2, mid + 1, high, l, r, seg);
//     return min(lft, rgt);
// }
// ll query(ll x) {
//     cout << x << endl;
//     cout.flush();
//     ll y;
//     cin >> y;
//     if (y == 0 || y == -2) {
//         exit(0);
//     }
//     return y;
// }
// const ll N = 2 * 1e5 + 10;
// vll fac(N, 1), inv(N, 1);

// void dfs(ll i, vvll&adj, vll &vis) {
//     // dp[i] = w[i];
//     vis[i] = 1;

//     // ans = max(ans, dp[i]);
//     for (auto it : adj[i]) {
//         if (vis[it]) continue;
//         dfs(it, adj, vis);

//     }

// }
bool ok ;

// const ll N = 2e5 + 10;
// ll fac[N + 1], inv[N + 1];
// ll ncr(ll n, ll r) {
//     if (n < r) return 0;
//     ll ans = (((fac[n] * inv[n - r]) % mod) * inv[r]) % mod;
//     return ans;
// }
void build (ll ind, ll l, ll r, vll &v, vll &seg) {
    if (l == r) { seg[ind] = v[l]; return;}
    ll mid = (l + r) / 2;
    build(2 * ind + 1, l, mid, v, seg);
    build(2 * ind + 2, mid + 1, r, v, seg);
    seg[ind] = max(seg[2 * ind + 1], seg[2 * ind + 2]);
    return ;
}
// ll query(ll ind, ll low, ll high, ll l, ll r, vll &seg) {

//     if (r < low || l > high) {
//         return LLONG_MIN / 2;
//     }
//     if (low >= l && high <= r) {
//         return seg[ind];
//     }
//     ll mid = (low + high) / 2;
//     ll lft = query(2 * ind + 1, low, mid, l, r, seg);
//     ll rgt = query(2 * ind + 2, mid + 1, high, l, r, seg);
//     return max(lft, rgt);
// }

// void update(ll ind, ll low, ll high, ll l, ll r, ll val, vll &seg) {
//     //update previous remaining updates

//     if (high < l || r < low) return;
//     if (low >= l && high <= r) {
//         seg[ind] += val;

//         return ;
//     }
//     ll mid = (low + high) / 2;
//     update(2 * ind + 1, low, mid, l, r, val, seg);
//     update(2 * ind + 2, mid + 1, high, l, r, val, seg);
//     seg[ind] = (seg[2 * ind + 1] + seg[2 * ind + 2]);

// }
vll help(ll l, ll r, vll curr, vll &v) {

    for (ll i = r; i >= l; i--) curr.pb(v[i]);
    for (ll i = 0; i < l; i++) curr.pb(v[i]);
    return curr;
}
void dfs(ll i, vector<set<ll>>&adj, vll &vis, ll par) {
    // dp[i] = w[i];
    vis[i] = 1;
    ll mx = 0;
    // ans = max(ans, dp[i]);
    for (auto it : adj[i]) {
        if (vis[it] && it != par) {ok = false;}
        if (!vis[it]) dfs(it, adj, vis, i);

    }


}
bool helper(ll x) {
    ll y = llround(sqrt(x));
    return y * y == x;
}
int  help(vii &v, ll x) {
    int cnt = 0;
    for (auto it : v) {
        if (helper(it + x)) {
            cnt++;

        }
    }
    return cnt;
}
ll query(vll &v) {
    cout << "? ";
    for (auto it : v) cout << it << " ";
    cout << endl;
    cout.flush();
    ll x;
    cin >> x;
    return x;
}
bool check(ll x, vll &v) {
    ll n = v.size();
    ll i = 0, j = n - 1;
    while (i < n) {
        if (v[i] - v[0] > 2 * x) break;
        i++;
    }
    while (j >= 0) {
        if (v.back() - v[j] > 2 * x) break;
        j--;
    }
    if (i > j) return true;
    if (v[j] - v[i] > 2 * x) return false;
    return true;
}
bool isval(ll i, ll j, ll n, ll m) {
    if ((i < 0) || (j < 0) || (i >= n) || ( j >= m)) return false;
    return true;
}
void help(ll i, ll j, vvll &vis, ll req, vvcc &mat, vvcc &ans, char c) {
    ll cnt = 1;
    ll n = mat.size(), m = mat[0].size();
    vis[i][j] = 1;
    queue<pll>q;
    q.push({i, j});
    while (!q.empty()) {
        ll x = q.front().ff;
        ll y = q.front().ss;
        q.pop();
        // cout << c << " ";
        // ans[x][y] = c;
        // cout << ans[x][y] << " ";
        if (isval(x + 1, y, n, m)) {
            if (((mat[x + 1][y] != 'R' ) || (cnt < req)) && (!vis[x + 1][y])) {
                // if (mat[x + 1][y] == 'R' ) cnt++;
                vis[x + 1][y] = 1;
                q.push({x + 1, y});
            }

        }
        if (isval(x - 1, y, n, m)) {
            if (((mat[x - 1][y] != 'R') || (cnt < req)) && (!vis[x - 1][y])) {
                // if (mat[x - 1][y] == 'R' ) cnt++;
                vis[x - 1][y] = 1;
                q.push({x - 1, y});
            }

        }
        if (isval(x, y + 1, n, m)) {
            if (((mat[x][y + 1] != 'R') || (cnt < req)) && (!vis[x][y + 1])) {
                // if (mat[x][y + 1] == 'R' ) cnt++;
                vis[x][y + 1] = 1;
                q.push({x , y + 1});
            }

        }
        if (isval(x, y - 1, n, m)) {
            if (((mat[x][y - 1] != 'R' ) || (cnt < req)) && (!vis[x][y - 1])) {
                // if (mat[x][y - 1] == 'R' ) cnt++;
                vis[x][y - 1] = 1;
                q.push({x, y - 1});
            }

        }
    }
    return;
}
void yahapekrege() {
    ll n;
    cin >> n;
    if (n <=4) cout << "Bob";
    else cout << "Alice";
}
int32_t main() {
    ios_base::sync_with_stdio(0);
    cin.tie(0);
    cout.tie(0);


    // freopen("input.txt", "r", stdin);
    // freopen("output.txt", "w", stdout);

    // fac[0] = 1, fac[1] = 1;
    // for (ll i = 2; i <= N; i++) {
    //     fac[i] = (fac[i - 1] * i) % mod;
    // }
    // inv[N] = inverse(N, mod);
    // for (ll i = N - 1; i >= 0; i--) {
    //     inv[i] = inverse(i, mod);
    // }
    // sieve(N);
    int t;
    cin >> t;
    //
    while (t--) {
        //     // cout<<"Case #"<<a<<": ";

        yahapekrege();
        //     // a++;
        cout << endl;
    }
    return 0;
}


Comments

Submit
0 Comments
More Questions

322. Coin Change
307. Range Sum Query - Mutable
287. Find the Duplicate Number
279. Perfect Squares
275. H-Index II
274. H-Index
260. Single Number III
240. Search a 2D Matrix II
238. Product of Array Except Self
229. Majority Element II
222. Count Complete Tree Nodes
215. Kth Largest Element in an Array
198. House Robber
153. Find Minimum in Rotated Sorted Array
150. Evaluate Reverse Polish Notation
144. Binary Tree Preorder Traversal
137. Single Number II
130. Surrounded Regions
129. Sum Root to Leaf Numbers
120. Triangle
102. Binary Tree Level Order Traversal
96. Unique Binary Search Trees
75. Sort Colors
74. Search a 2D Matrix
71. Simplify Path
62. Unique Paths
50. Pow(x, n)
43. Multiply Strings
34. Find First and Last Position of Element in Sorted Array
33. Search in Rotated Sorted Array